TAIM-GAN: Fusing Image With Text
For Advanced Face Filtering

Ruslan Mikhailov, Rohit Bharadwaj, Bhuvnesh Kumar
Mohamed bin Zayed University of Artificial Intelligence
Masdar City, Abu Dhabi, UAE
{ruslan.mikhailov, rohit.bharadwaj, bhuvnesh.kumar}@mbzuai.ac.ae
Project Report

Abstract

Our project aims to semantically modify the parts of an image according to a given
text that contains desired attributes (e.g., color and background) while preserv-
ing text-irrelevant contents of the image. We employ a Lightweight generative
adversarial network, i.e., Text Assisted Image Manipulation-Generative Adver-
sarial Network (TAIM-GAN) based on [[10]. The authors in [[10]] propose the
word-level discriminator loss, which provides the Generator with fine-grained
training feedback at word-level, to facilitate training a lightweight generator with
a small number of parameters, but can still correctly focus on specific visual at-
tributes of an image. Extensive experimental results show that our method can
better disentangle different visual attributes, then correctly map them to corre-
sponding textual words, and thus obtain a more accurate image modification using
natural language descriptions. We train TAIM-GAN on CUB-Birds, COCO, and
UTKFace Datasets. We also deploy our model as a web application that any-
one can use and try the demo with their custom images and text. Github link:
https://github.com/Dmmc123/taim-gan

1 Introduction

Text-assisted image manipulation involves editing the images according to given textual descriptions
to meet the user’s preferences. With recent development in deep learning techniques and generative
models, text-assisted image manipulation has gained remarkable popularity, and various applications
based on image modification have been developed [6, |2} 3]

Previously suggested methods [4)} |14] fail to provide the desired results effectively and cannot
modify the text-required attributes. On the other hand, a multi-stage network can produce more
realistic images [11]. However, it uses a multi-stage framework with multiple pairs of generator and
discriminator [11]], which occupies a large memory and requires a significant amount of time for
training and inference, which is inconvenient to memory-restricted devices, such as mobile phones.

The previous discussion motivates us to investigate a lightweight network architecture in which
we use a single generator, and the word-level discriminator [[10]], which makes the architecture
lightweight by reducing the number of stages [Our Generator, Discriminator, image encoder, and
text encoder consist of 15.4M, 580K, 721K, and 516K trainable parameters, respectively, for the
UTKFace dataset]. In this project, we propose the Text Assisted Image Manipulation Generative
Adversarial Networks (TAIM-GAN) for generating high-quality new features corresponding to the
given text and simultaneously preserving text-irrelevant contents of the original image. Thus it helps
automatically edit an image using some natural language descriptions. To obtain this, we employ a

https://github.com/Dmmc123/taim-gan

word-level discriminator that provides the Generator with fine-grained training feedback at the word
level to facilitate training a generator with a small number of parameters. However, the Generator
can still accurately focus on particular visual attributes of an image and then modify them without
affecting other features not mentioned in the text.

To this end, we implemented the baseline architecture given in [10] and trained our model on the
CUB bird and COCO datasets.

2 Related Work

A Generative Adversarial Network (GAN) is a neural network generally used in computer vision
tasks to synthesize images. Although there are many models, which have been developed to generate
realistic images, like deterministic networks [3]], Variational Autoencoders (VAE) [8]], and autoregres-
sive models [[18]]. GAN-based models have consistently shown superior results and obtained highly
realistic image outputs. [7].

GANS can also be modified to take in a conditioning variable as an input. Introducing these conditions
will constrain the GAN outputs, which is beneficial for image editing tasks. [23}1]]. The conditions
can also be in text format, by which we can generate images to match the given text descriptions.
Reed et al. [[15] first proposed an end-to-end deep neural architecture based on conditional GAN
framework, successfully generating realistic images (64 x 64) from natural language descriptions.
Reed et al. [15] proposed a two-step method called "style transfer" to produce images using query
images and text descriptions.

Our method can be seen as a variant of the conditional GAN framework but conditioned on both
image and text information, including modifying images according to restrictions imposed by textual
descriptions.

In this project, we used the method proposed in [10] as our baseline approach. [10] proposed a
lightweight architecture of GAN consisting of word level discriminator to reduce the number of
stages. The two networks in the paper are trained simultaneously. One aims to generate image
samples from pure noise, called the generator network, and the other aims to classify them as either
coming from the actual data distribution or the generated distribution, known as the Discriminator.
The Generator consists of a text encoder, an image encoder, and a series of upsampling and residual
blocks.

We also use the Affine Combination Module (ACM) from [[11]. ACM maps the image features
relevant to the text with corresponding semantic words for effective manipulation.

The architecture of the Generator is a modified version of StackGAN++. [21]]

3 Methodology of TAIM-GAN

Figure [I] describes the overall architecture of our GAN-based model. The usage of transfer learning
has shown remarkable success in many of the deep learning based applications and benchmarks.
Transfer learning allows us to perform better from our models at lower compute costs. Motivated
by this, we use Inception-v3 [17]] and VGG-16 [16], which are pre-trained on ImageNet, as our
image encoders. Since the features obtained from Inception are extracted from deeper layers, they
contain only rough information about the image (basic shape, outline, and layout). Thus, inception
features can effectively interact with textual features, and we implement this interaction in the form of
different attention modules described in the subsequent subsections. Features from VGG are extracted
from shallower layers; thus, they contain more semantic information about the input image. Thus, we
utilize VGG features in the perceptual loss objective of the Generator. We extract two types of features
from the Inception image encoder. The feature v; corresponds to the local features, and the feature v,
corresponds to the global features of the image. Following [20]], v; is extracted from the ‘mixed_6e’
layer of the inception network. In contrast, v, is extracted from the last pooling layer of the Inception
network. Both v; and v, are then converted into the same semantic space of text embeddings. Thus,

Image

Uy

Encoder

vgg features
VGG-16

local features

Image ! L — v Predict

Encoder | Fake / Real

Yg Generator Discriminator ——>
Real Image Inception global features 3
> €y e

. . word embeddings
a small bird with yellow, grey,

white feathers and black wings
Text €y
Caption for the given image Encoder

€5

sentence
embeddings

noise Z~N(0,1)

Figure 1: The Architecture of our model.

v € RPXITX17 "and vy € RP, where D is the dimension of text embeddings. Using our text
encoder, we obtain both the sentence embeddings, e; € RP, and word level embeddings, e,, € RDxL
where L is the number of words in the sentence. We use a bi-directional LSTM network as our text
encoder. To get the word embeddings, we concatenate the forward and the reverse hidden states of
the LSTM cell corresponding to each word. For sentence embedding, we concatenate the forward
and the reverse hidden state of the last word. These sentence and word embeddings are then used by
the Generator and the Discriminator networks for generating the edited image and providing strong
training feedback to the Generator, respectively.

We describe the architecture of the Generator, Discriminator, and the training objectives used for both
networks in the subsequent subsections.

3.1 Generator

The basic architecture of the Generator is adapted from [21]]. However, there are various modifications
done to the base architecture. StackGAN++ uses multiple multi-stage generators and discriminators
to generate outputs at different image scales. In our work, we use only a pair of one Discriminator and
one Generator, and our output is generated at only a single image scale of 256 x 256. However, the
Generator still follows the multi-stage approach of [21]]. The Generator also incorporates Spatial[20]
and Channel Attention[9] modules, along with the Affine Combination Module[]11]], which helps in
generating edited images according to given text description during the inference stage.

3.1.1 Conditioning Augmentation

The first step of the generation process is to obtain the conditioning variable, ¢, from the sentence
embeddings. The conditioning variable is randomly sampled from ¢ ~ N (u(es), X(es)), i-e., a
gaussian distribution whose mean and diagonal covariance matrix is a function of the sentence
embeddings. This sampling process allows us to create more training data, even for a limited set of
text-image pairs. Further, the conditioning variable allows the generated images to be conditioned
on the text descriptions. The randomness in generating ¢ is beneficial to our model, as a single text
description can generate different images with varying poses and appearances.

3.1.2 Network Components

The Generator takes in the local inception features, v;, and upsamples the 17 x 17 feature map into
32 x 32 spatial size, generating hg. Figure 2] shows the architecture of the first stage of the Generator.

IText Encoder

oo

()
1

G
h(l)

h(l‘u R

>

hm .
L .| Spatial . Channel
3zxaz | Attention " Attention

l h? 5)
| A ! h!

&

By ROB
Residual 3 Upsample »

3
g
L 4

Figure 2: The Architecture of the first stage of Generator

Spatial Attention allows the model to focus on the essential words while generating a sub-region. To
account for channel information, where different channels may encode different types of information,
we then employ the Channel Attention module [Fig. . The features hgﬁ) and hy are passed as inputs
to the ACM Module 3] which selects image regions from hg relevant to the given text, and correlates
the regions with the respective semantic word tokens, to get the output feature h§7). Finally, we apply
residual layers and upsample the hidden feature to return hq of spatial size 64 x 64.

The second stage follows a similar process of applying attention modules to the features and the word
embeddings. However, in the ACM module, we pass in VGG features as inputs instead of hg, which
contrasts with the first stage. Since these VGG features contain more semantic details than Inception,
they can help the Generator by correcting wrong attributes and filling in the missing details. Finally,
after up-sampling, the output hy from the second generator stage is of spatial size 256 x 256.

Figure 3: Architecture of Affine
Combination Module

Figure 4: Architecture of Spatial Figure 5: Architecture of Chan-
Attention Module nel Attention Module

3.2 Discriminator

In GAN architectures, the Discriminator part is responsible for telling if the image is actual (comes
from a raw data distribution) or fake (is generated by the Generator). Our Discriminator has a
broader scale of responsibilities. Besides providing the image-level feedback (either true or false),
our Discriminator also provides level-word feedback to ensure that each word is present on an image.

Our Discriminator in TAIM-GAN consists of two parts:

1. Feature extractor which we chose to be Inception-v3 network. The key purpose of a feature
extractor is to convolve the images and retrieve meaningful visual information about them.

2. Logit extractors which provide image- or word-level feedback given features of real/fake
images. In total, there are three types of logit extractors:

(a) Word-level logits extractor which takes image features and word-level embeddings as
an input and outputs a number from 0 to 1 for each word in a caption of every image to
signify the presence of that word in an image.

(b) Unconditional logits extractor takes just image features and tries to guess whether
they correspond to real or fake images.

(c) Conditional logits extractor which takes not only visual features but also sentence-
level embeddings and tries to condition the real/fake prediction on the text of a caption.

3.3 Training

To train TAIM-GAN, we first pre-train the image and text encoders by using only the DAMSM
Loss [20]. This aligns the textual embeddings with the corresponding semantic visual attributes. After
this pre-training, we freeze both the image and text encoders and train the generator and discriminator
modules on the given dataset.

The loss function used to train the Generator is given by Eq/[I]
EG = ﬁuncond + Accond + ﬁpercept(I; II) + ACDAMSM (1)
here,

1
Luncond = —§E 1'~pg[log(D(I"))] [Unconditional Adversarial Loss]

1
Leond = _iE 1'~pg|log(D(I",S))] [Conditional Adversarial Loss]

Loercept = MSE(¢(I'),¢(I)) [Perceptual Loss]

The unconditional adversarial loss is calculated by using unconditional logits obtained from the
Discriminator. We pass the fake images from the Generator to the Discriminator to get the image
features. These image features are then converted to unconditional logits using convolution and flatten
layers. Similarly, the conditional adversarial loss is calculated using the conditional logits obtained
from the Discriminator. The Discriminator takes in the visual features and sentence embeddings
which are then projected to the same dimensional space, concatenated, and flattened to get the
conditional logits. These fake logits are then passed to a binary cross-entropy loss function with labels
corresponding to the true/real images to train the generator network. Lpamsm is the fine-grained
image-text matching loss adapted from [20]]. We also use perceptual 10ss, Lpercepts Which prevents
modifying image contents that are not described in the text and reduces randomness in the generation
process. We compute the mean-squared-error loss of the VGG features [¢(.)] obtained by encoding
the generated and real image to calculate Lyereepi- The following equation gives the loss for the
Discriminator:

unconditional adversarial loss conditional adversarial loss

Lo =5 | Ermrllog (D) +Errllos (DT, 5))]|

— 5 [Brenliog (1= D) + Bavepyflog (1 = D', 5))]

+ £word(Ia W)

where Lyorg [10] is the word-level loss provided to the Generator by the Discriminator, I is the real
images, I’ is the images generated by the Generator, S is the sentence-level embeddings from a
caption, and W is word-level embeddings from each word of each caption. The unconditional and
conditional adversarial loss is computed using a similar method as described earlier. However, to
train the Discriminator, we pass labels corresponding to real/fake images based on whether the image
is obtained from the dataset or generated by the Generator, respectively.

4 Experiments & Results

4.1 Datasets

In our project, we first train and validate our approach by performing experiments on CUB Bird,
COCO, and UTKFace datasets.

+ CUB Bird Dataset[19]: This dataset is the most widely-used dataset for fine-grained visual
categorization tasks. It contains 11,788 images of 200 subcategories belonging to birds.
Each image has detailed annotations: 1 subcategory label, 15 part locations, 312 binary
attributes, and one bounding box. Each image has ten captions. The natural language
descriptions are collected through the Amazon Mechanical Turk (AMT) platform.

+ COCO Dataset[13]: COCO dataset is a large-scale object detection, segmentation, key-
point detection, and captioning dataset. The dataset consists of roughly 41k images in
the test set. There are five text captions for each image in COCO. In contrast with CUB
Bird, which is limited to bird images and captions, COCO contains a diverse set of objects
occurring in the real world.

» UTKFace [22]: Dataset with 20k+ facial images for the tasks of face recongition, age &
gender prediction.

We took around 10k images from UTKFace and generated captions for each image by using the
BLIP [12] model since UTKFace did not provide us with text captions which are required for our
work. As we are using captions generated from an AI model for UTKFace, the quality of the captions
is not very good, which leads to slightly poor performance compared to the model trained on the
other two datasets.

Fig[6] Fig[7} and Fig[§]show the output from the Generator during training on Birds, COCO, and
UTKFace data, respectively.

Figure 7: Images from Generator after 20 epochs of training on the COCO dataset

4.2 Evaluation

Table [1.2] shows the Inception Score (IS) metrics of different GAN architectures across different
datasets. IS is based on the idea that if a GAN can generate realistic images, then a classifier trained

Figure 8: Images from Generator after 125 epochs of training on the UTKFace dataset

on real images should be able to classify the generated images accurately. The Inception Score is
calculated as the average of the classifier’s accuracy on the generated images, multiplied by the
exponential of the classifier’s entropy. The Inception Score has been shown to correlate well with
human image quality judgments, and it has become a popular metric for evaluating GANs.

COCO Birds UTKFace

StackGAN++ 8.30 4.04 -
AttnGAN 25.89 4.36 -
ControlGAN 24.06 4.58 -
ManiGAN 14.96 8.47

TAIM-GAN (ours) 11.94 3.18 2.52

Table 1: Evaluation results

4.3 Deployment to Hugging Face

Our trained model has been deployed as a web application on hugging face (https://huggingface,
co/spaces/ML701G7/taim-gan). Our model has three variants having three different datasets of
Bird, COCO, and UTK Face. Fig.[9]shows the generated image from our bird model with text input
as “black bird with white wings” while Fig[T0] shows the generated image with textual input as
“« . . e e . . . :

green bird with white wings”. similarly figure[T1]is the manipulated output image according to
textual input “white bird with orange wings”.

Figure 9: Black bird with white Figure 10: Green bird with Figure 11: White bird with or-
wings white wings ange wings
4.4 Progress

Our project progress can be summarized in the following checklist:

\Zr Research the primary references of LWGAN (AttnGAN, ManiGAN, ControlGAN, Stack-
GAN, StackGAN++)

https://huggingface.co/spaces/ML701G7/taim-gan
https://huggingface.co/spaces/ML701G7/taim-gan

Ef Rewrite all LWGAN code from scratch:

v Generator
Ef Discriminator
M Textual and visual encoders

uf Setup for training and conducting experiments

uf Configure remote training system on HPC
uf Develop loss functions to meet objectives of D and G
uf Implement the code for training TAIM-GAN

¥ Test the hypothesis and train our first version of TAIM-GAN
M With TAIM-GAN, report values for Inception Score on COCO, Bird, and UTKFace datasets
uf Deploy model on the internet

For more detailed information about the development process please visit the GitHub page for our
project: https://github.com/Dmmc123/taim-gan

5 Conclusion

In this work, we implemented a text-conditioned image generation model - TAIM-GAN. TAIM-GAN
is based on the LWGAN architecture and builds upon it by refactoring the entire codebase and
upgrading the underlying software that the primary implementation of LWGAN uses. From this
work, we have also tried to align the code with the theory described in the paper; thus, researchers
can easily make a one-to-one correlation between the code and the report.

We have also collected a new dataset on top of UTKFace by propagating facial images through the
BLIP network to get captions for them and obtain over 10k pairs of images and corresponding text in
the domain of facial data.

In the end, we evaluated our model on three datasets - the COCO dataset, the modified version of the
UTKFace dataset, and the CUB dataset and in the latter two datasets, our model was able to generate
realistic images of birds or people’s faces that matched the given text description. The generated
images were of decent quality, and the text descriptions were often reflected in the generated images.
For example, when the text description contained the word "red," the generated image often showed
a bird with red plumage.

Our results suggest that our model can generate good-quality images matching the text description.
In future work, we would like to evaluate our model on other datasets, such as the ImageNet dataset.
We would also like to investigate other ways to improve the quality of the generated images.

References

[1] Andrew Brock et al. “Neural photo editing with introspective adversarial networks”. In: arXiv
preprint arXiv:1609.07093 (2016).

[2] Guillaume Charpiat, Matthias Hofmann, and Bernhard Scholkopf. “Automatic image coloriza-
tion via multimodal predictions”. In: European conference on computer vision. Springer. 2008,
pp- 126-139.

[3] Qifeng Chen and Vladlen Koltun. “Photographic image synthesis with cascaded refinement
networks”. In: Proceedings of the IEEE international conference on computer vision. 2017,
pp. 1511-1520.

[4] Hao Dong et al. “Semantic image synthesis via adversarial learning”. In: Proceedings of the
IEEE international conference on computer vision. 2017, pp. 5706-5714.

[5] Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. “Learning to generate chairs
with convolutional neural networks”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015, pp. 1538-1546.

https://github.com/Dmmc123/taim-gan

(6]

(7]
(8]
(9]

[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. “Image style transfer using convo-
lutional neural networks”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 2414-2423.

Ian Goodfellow et al. “Generative adversarial networks”. In: Communications of the ACM
63.11 (2020), pp. 139-144.

Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

Bowen Li et al. “Controllable Text-to-Image Generation”. In: Advances in Neural In-
formation Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates,
Inc., 2019. URL: https : / / proceedings . neurips . cc / paper / 2019 / file /
1d72310edc006dadf2190caad5802983-Paper . pdfl

Bowen Li et al. “Lightweight generative adversarial networks for text-guided image manipula-
tion”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 22020-22031.
Bowen Li et al. “ManiGAN: Text-Guided Image Manipulation”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020.

Junnan Li et al. “Blip: Bootstrapping language-image pre-training for unified vision-language
understanding and generation”. In: arXiv preprint arXiv:2201.12086 (2022).

Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European conference
on computer vision. Springer. 2014, pp. 740-755.

Seonghyeon Nam, Yunji Kim, and Seon Joo Kim. “Text-adaptive generative adversarial
networks: manipulating images with natural language”. In: Advances in neural information
processing systems 31 (2018).

Scott Reed et al. “Generative adversarial text to image synthesis”. In: International conference
on machine learning. PMLR. 2016, pp. 1060-10609.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. 2014. DOI:|10.48550/ARXIV.1409.1556. URL: https://arxiv.org/
abs/1409.1556.

Christian Szegedy et al. “Rethinking the Inception Architecture for Computer Vision”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 2818-2826.
DOI:/10.1109/CVPR.2016.308.

Aaron Van den Oord et al. “Conditional image generation with pixelcnn decoders”. In: Ad-
vances in neural information processing systems 29 (2016).

C. Wah et al. CUB Bird Dataset. Tech. rep. CNS-TR-2011-001. California Institute of Tech-
nology, 2011.

Tao Xu et al. “AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative
Adversarial Networks”. In: CoRR abs/1711.10485 (2017). arXiv:|1711.10485, URL: http:
//arxiv.org/abs/1711.10485|

Han Zhang et al. “Stackgan++: Realistic image synthesis with stacked generative adversarial
networks”. In: IEEE transactions on pattern analysis and machine intelligence 41.8 (2018),
pp. 1947-1962.

Song Zhang Zhifei. “Age Progression/Regression by Conditional Adversarial Autoencoder”.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. 2017.
Jun-Yan Zhu et al. “Generative visual manipulation on the natural image manifold”. In:
European conference on computer vision. Springer. 2016, pp. 597-613.

https://proceedings.neurips.cc/paper/2019/file/1d72310edc006dadf2190caad5802983-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1d72310edc006dadf2190caad5802983-Paper.pdf
https://doi.org/10.48550/ARXIV.1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2016.308
https://arxiv.org/abs/1711.10485
http://arxiv.org/abs/1711.10485
http://arxiv.org/abs/1711.10485

	Introduction
	Related Work
	Methodology of TAIM-GAN
	Generator
	Conditioning Augmentation
	Network Components

	Discriminator
	Training

	Experiments & Results
	Datasets
	Evaluation
	Deployment to Hugging Face
	Progress

	Conclusion

